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Thermal Conductivity of a Shearing Molecular Fluid 

P. J. Da i v i s :  3 and D. J. Evans e 

We have investigated the thermal conductivity lensc, r of strongly sheared alomic 
and molecular liquids by compt,ter simulation methods. According to linear 
n o n e q u J l J b r i u n l  [ ] l e r l l l odyn ; . i n l i c s ,  hc:.l| ; ind  t r a n s v e r s e  n l o n l e n l u n l  l r a n s p o r t  t i re  

uncoupled in the linear regime. We also expect the thermal conductivity to be 
independent ol + the zero-wavevector strain rate m the linear regime. Away from 
the Linear regime, the situation is different. Ahhough even a large zero-wave- 
vector strain rate cannot reduce a heat flux. the thermal condtlctJvJty can 
become strain+rate dependent. Furthermore. the thermal conductivity becomes 
a lensor because a strc, ng velocity prolile can destroy the isotropy c,f a I]uid. 
These effects are only apparent at extremely high strata rates for atomic [kluids. 
but are experimentally observable Ibr polymeric liquids. 
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1. I N T R O D U C T I O N  

The effect o f  shear flow on the transport properties of  liquids is an interesting 
subject of study, not only in relation to its possible practical applications 
in polymer science and lubrication science, but also theoretically. Ewms 
[ 1 ] suggested an approach to the calculation of the thermal conductivity 
of a shearing fluid that was based on a similar approach used earlier to 
calculate the self-diffusion coefficient of  a shearing fluid [2].  The ,'esultant 
correlation function expression for the thermal conductivity tensor was 
tlsed by Daivis and Evans [ 3 ]  to calculate the strain-,'ate dependence of  
the thermal conductivi ty  tensor of  a simple liquid. In this paper, we present 
preliminary results o f  calculations of  the thermal conductivity tensor of  a 
shearing molecular  f luid--butane.  
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2. T H E O R Y  

The linear thermal conductivity is defined by the linear consitutive 
relation lot" heat flow in a small temperature gradient (Fourier's law) 

J,/(r, t ) =  - k ' V T ( r ,  t) (1) 

where Jq(r. t) is tile heat flux vector expressed as a function of tile labo- 
ratory position vector r and the time t. In general, tile thermal conductivity 
is a second-rank tensor. This is important when considering anisotropic 
materials. The linear thermal conductivity of an isotropic fluid reduces to 
a scalar, given by the well-known Green Kubo relation [4, 5] 

;"-3k~,-T:. ,It ( L , ( t ) ' J , , ( O ) > , ,  (2) 

where Jq(t) I" is tile zero-wavevector limit of tile spatial Fourier transform 
of Jq{ r, t). The 0 subscript indicates that the average is carried out at equi- 
librium. Tile microscopic expression for Jq(t) l" in tile case of a simple 
atomic liquid is 

p, 1 p, 
J,~(t) l ' = ~ m e , -  ~ ~  ~ r0F , / ' - -  (3) 

• - - s , i ~ i  " IH 

where p, is tile momentum of particle i. 
to r , - r ,  F,/ is the lbrce on atom i due 
the system. Equation (2) is evaluated at 
fluid streaming velocity u(r) is zero. In 
particle el is given by 

m is tile atomic mass, r 0 is equal 
to atom .], and I" is the volume of 
equilibrium, so the time-averaged 
this case, tile internal energy pet" 

e, = 2.--~ 
--.i# i 

(4) 

where ~/J0 is the potential energy of atom i due to interaction with atom j. 
Now consider a fluid undergoing planar shear, with a linear velocity 

profile given by u( r )=  iTy, where i is a unit vector in the x direction and 
;' is tile strain rate. Tile continuity equation for the internal energy density 
for such a system is given by 

@p [ U(r, t) 

~t 
- V .  J u -  y ' ( p ( r ' / )  U(r, t) u(r, t)) 

- pV(r, l) : Yu{r, 1) + H: ( r , / )  (5) 
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where W(r, t) is a term allowing for the effect of external forces on the 
internal energy of the system. In our case, it represents the work done by 
the force of constraint (the thermostat) that keeps the peculiar kinetic 
energy constant. In order to eliminate the effect of the streaming terms in 
Eq.(5), Evans [1]  introduced a microscopic Lagrangian coordinate q; 
defined as 

qi(t) = ri(O) + f '  pi(s) ~& 
0 I l l  

4t 

= r ; ( t ) - j  u;(s) ds (6) 
[I 

The microscopic Lagrangian internal energy density is then given by 

e(q, t) = ~ e;(t) 5 ( q - q ; ( t ) )  
i 

7) 

This leads to the following expression for the zero-wavevector Lagrangmn 
heat flux vector [1]:  

JL(t) v = ~ P m  1 P; ei-~ ~', qoF, , ' - -  
• - i , i ~ i  171  

(8) 

This expression differs from Eq. (3) in that the microscopic Lagrangian 
displacement q rather than the laboratory displacement r appears in the 
potential part. A derivation very similar to that used to obtain the equi- 
librium thermal conductivity [5]  leads to an expression for the thermal 
conductivity tensor [ 1 ] 

k-k.T~. J,, dt (JL(t )  JL(O))~. (9) 

Here, ( . . . )  ;. denotes an average over an equilibrium canonical ensemble of 
systems that have been brought into a shearing steady state with constant- 
energy dynamics. It is assumed that the strain rate was applied at time 
t = -cr~ and that a steady state has been achieved by the time t - -0 .  Note 
that a canonical ensemble of systems that have been brought into a 
shearing steady state with constant-energy dynamics has the same energy 
fluctuations as the equilibrium ensemble from which it was generated. This 
means that the zero-time value of the correlation function of internal- 
energy-density fluctuations is the same as it is at equilibrium This, in turn, 
is related to the specific heat and the temperature T~. of the generating 
equilibrium ensemble. Therefore, the temperature appearing in Eq. I9) is 

N4(I 16 2-7"  



394 Daivis and Evans 

the equilibrium temperature, not the kinetic temperature of the nonequi- 
librium steady state [1].  At equilibrium, Eq. 19) reduces to Eq. (2). An 
analysis of Eq. {9) reveals that it is only the .v.v, xv, and x z  elements of the 
thermal conductivity tensor that are affected by the use of the microscopic 
Lagrangian coordinates q ,  As we have shown previously [3] ,  these 
elements of the thermal conductivity tensor are much more difficult to 
calculate than the others, because of the appearance of the q,. On the other 
hand. the remaining elements of ~. are more interesting in a sense, as they 
govern the flow of heat transverse to the streaming velocity, which is the 
interesting quantity in lubrication, for example. Therefore. we have 
restricted this study to an investigation of the y x ,  yy ,  y : ,  :x, :y, and : :  
elements of L. 

3. S I M U L A T I O N  DETAILS 

In previous work, we have presented restflts for the thermal conduc- 
tivity tensor of a shearing simple liquid [3].  In this paper, we present new 
results for the thermal conductivity tensor of shearing liquid butane. We 
have used the anisotropic united atom model [AUA(2)]  of butane that 
was recently proposed by Padilla and Toxvaerd [6].  The nonequilibrium 
molecular dynamics equations of motion that were used to generate the 
shearing steady states for this model were 

i ' , ,  = p ~  + i , ' y ,  
171.~ 

lO) 

and 

1~,~ = F~/'~ + FC m, . m, II) 

where F '/' represents the force due to Lennard-Jones, dihedral, and bond- 
angle-bending potential interactions, and F c represents the intramolecular 
bond-length constraint Ibrces. In these equations, m~ is the mass of a site, 
Mi is the mass of the molecule, i is a unit vector in the x direction, 7 is the 
strain rate, ~ is the thermostatting multiplier, and p,.i is the v component  
of the momentum of molecule i. The thermostat keeps the translational (or 
center-of-mass) kinetic temperature fixed, and the multiplier is obtained 
fi'om Gauss'  principle of least constraint as 

Zi'L, I l l g , ) {  p,-",'P,,P,,I 
" Y~i= l (llMi) p': 

(12) 
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These equations of motion, and techniques for implementing them, are 
fully described in other publications [7].  Note that although the previous 
calculations of the strain-rate-dependent thermal conductivity tensor were 
Ibr constant energy (i.e., keeping the energy fixed while increasing the 
strain rate), these simulations are for constant kinetic temperature. We 
expect averages obtained by the two different methods at a given state 
point to agree, although plots of properties against strain rate will traverse 
different energies at constant temperature, and different temperatures at 
constant energy. 

The AUAI21 model differs from other united atom models of alkanes 
in that thc center of the Lennard-Jones lbrce between two functional 
groups representing CH,  or CHs groups is located at the geometrical 
center of the corresponding functional group rather than at the position 
of the corresponding backbone carbon atom [6].  The exact position of the 
center of interaction may depend on the positions of as many as three 
different mass-site positions, giving rise to as many as six forces resulting 
from the interaction of two united atom interaction sites. In addition to 
the anisotropic site-site interactions, the AUA(2) model includes a bond- 
angle-bending potential and a torsional potential. The masses of the sites 
representing C H ,  and CHs functional groups differ, unlike in the 
Ryckaert-Bellemans model, its do the Lennard-Jones energy and distance 
parameters. The reader is referred to the literattlre for further details [6] .  
The peculiarities of the AUA(2) potential lead to a somewhat unusual form 
for the molecuhir heat flux vector, i.e., 

1 Pi~ 

- -  if /lli~ 

I 

t \ ~,r,~ + c~'r,, + ?r, ,  I I (13) 

4. RESULTS 

The state point that we have chosen to simulate has a reduced tem- 
perature of 2.2720 and a reduced density of 1.05880. These correspond to 
a temperature and density, in real units, of 272.635 K and 601.1 k g . m  3 
which is the boiling point of liquid butane at atmospheric pressure. In this 
work, we focus on the elements of the thermal conductivity tensor govern- 
ing the flow of heat transverse to the streaming velocity. Therefore, we only 
consider the yx, yy, yz, zx, zy, and zz elements of ;c. Furthermore, we 
can immediately say that the x - ,  y z ,  z x ,  and z l '  elements are equal to zero 
due to symmetry. This leaves the )3', yx, and z z  elements. 
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Fig. I. Strain-rate dependence of tile viscosity of AUAI21 model butane at 
temperature T= 272.635 K and density p = 61")1.1 kg- m -~. 

The s t ra in-ra te  dependence  of  the viscosity of  butane  ob ta ined  from 
these exper iments  is plot ted in Fig. 1. The exper imenta l  value of  the zero 
s t ra in-ra te  viscosity of  butane  at this state point  is 0.203 m P a . s  (3.93 in 
reduced units) and the thermal  conduct iv i ty  is 0.117 W .  m -~ .  K -~ (4.09 in 
reduced units) [8 ] .  Figure 1 shows that the zero-s t ra in- ra te  viscosity is 
p robab ly  underes t imated  by this model  of butane,  but  Fig. 2 shows that  the 

Fig. 2. 
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Strain-rate dependence of the diagonal elements 2,, and 2:: of the thermal conduc- 
tivity tensor corresponding to heat flow normal to the streaming velocity. 
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Strain-rate dependence of the oil'-diagonal element ).,, of the thermal conductivity 
tensor corresponding to heat flow normal to the streaming velocity. 

linear thermal conductivity is accurately calculated, as both the )3' and z z  

elements of the thermal conductivity tensor seem to be converging to the 
literature value within the estimated errors of _+0.2 reduced units. The 
strain-rate dependence of the diagonal elements of the thermal conductivity 
tensor is quadratic, and the yx component of the thermal conductivity 
tensor decreases linearly with increasing strain rate (Fig. 3), as expected 
from our previous results for a simple atomic fluid. Using the fact that 2,., 
must be zero at zero strain rate, we find that the errors are consistent with 
our estimate of _+0.2 reduced units. 
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